

AIRFRESH

Newsletter #7

Editorial

We are pleased to present the second Newsletter of the project **AIRFRESH** "*Air pollution removal by urban forests for a better human well-being*". The main objectives, core actions, and performed activities are presented here.

The Project Team

AIRFRESH: Aims and Activities

Mass urbanization is one of the most urgent challenges of the 21st century, as ab. 80% of EU population will live in cities in 2030 and outdoor air pollution will cause 6.6 million premature deaths. **Urban reforestation can help** improve air quality and people's wellbeing. To efficiently reduce air pollution and target carbon-neutral and climate-resilient cities, a quantitative and concrete assessment of the role of urban trees in affecting air quality and thermal environment as well as a **suitable selection of tree species** are urgently needed.

In 2020-2024, AIRFRESH aimed to: 1) measure the air pollution removal capacity bytrees within a reforested test area in two Mediterranean cities (Aix-en-Provence - France, and Florence - Italy); and 2) estimate and quantify the environmental benefitsprovided by urban trees at city scale in both cities.

Two test areas were implemented in January 2022 (400 fast-growing trees, mix ofspecies, > 3 m tall, 1ha). Continuous measurements of air pollution concentrations and meteorology were carried out in and around the area, above and below the canopy, before and after tree planting using AirQino sensors.

Fig. 1 - Selection of 400 trees in the nursery Soupe in France (July 2021) with the municipality of Aixen-Provence.

AIRFRESH key messages

• A new methodology was developed to detect, classify, and map individual trees and green spaces at city scale, and quantify the amount of pollutants they remove from the urban air.

• The results allow identifying priority areas for greening in densely populated cities.

• Peri-urban forests influence climate conditions and air quality within the cities. Thus **peri-urban areas can be a target for greening strategies**.

• **Private trees in Aix and Florence were more than 80%** of the total, stressing the need of policies for private owners.

• Trees remove air pollutants from the air, e.g. particles (PM_{10}), nitrogen dioxide (NO_2), tropospheric ozone (O_3) and carbon dioxide (CO_2), but their efficiency depends on the species and local climate conditions.

• Scientifically-sound recommendations of the **best/worst woody species** for urban polluted environments were made available by AIRFRESH. Recommendations differ in different cities.

• The amount of removed pollutants can compensate the emissions from thousands of cars, e.g., in Aix-en-Provence, trees remove every year 41 tons NO2 (corresponding to the emissions from 6,600 cars), 97 tons PM_{10} (147,400 cars) and 16,560 tons CO_2 (10,400 cars)

• A methodology was developed for checking compliance of each building with the **3-30-300 rule**, i.e. at least 3 trees must be visible, green coverage in the surroundings must be 30%, the nearest entrance to a green space must be 300 m afar.

• The economic value of air pollution removal and Urban Heat Island reduction by current vegetation, as estimated in terms of avoided premature deaths, was 550 M€ for the city of Florence, 150 M€ for Aix-en-Provence and 700 M€ for Zagreb. The economic value is city dependent.

• This is the **first time** that air pollution and warming reductions by urban forests are quantified in tandem.

• These results help the **implementation of the EU strategies**, e.g. on biodiversity protection and Green Deal, that target planting of 3 billion trees by 2030 in the EU.

Fig. 1 - Stakeholders meeting on urban green - Bucharest 4 November 2024.

Stakeholders meeting on urban green - Bucharest 4 November 2024

AIRFRESH worked in Aix-en-Provence in France and Florence in Italy, with **transfer of good practices** to Bucharest city planners and stakeholders in presence of M. Fechet, Minister of Environment, Waters and Forests (Romania), Mr. Alexandru, Secretary of state in Ministry of Research, Innovation and Digitalization; Mr. Davidescu, General Director of National Institute for Research and Development in Forestry "Marin Drăcea" and Mr. Iacovici, Head of Urban Mobility Office - ADIZMB Bucharest City Hall - Ilfov County Council.

Fig. 2 - E. Paoletti, IUFRO, Research director (IRET-CNR), M. Fechet, Minister of Environment, Waters and Forests (Romania), and Mr. Davidescu, General Director of National Institute for Research and Development in Forestry "Marin Drăcea".

Upcoming events

International conference IUFRO RG8.04 "Influence of Air Pollution & Climate Change on Forest Dynamics" 1-5 September 2025 Split, Croatia https://www.iufro-split2025.com

European Forum on Urban Forestry 3-7 June 2025. Zürich, Switzerland https://efuf.org Partners

This project has received funding from the European Union -LIFE financial instrument in the framework of the AIRFRESH project (LIFE19 ENV/FR/000086).

Italian national agency for new technologies, energy and sustainable economic development

Contact Dr Pierre Sicard ARGANS psicard@argans.eu

Cet e-mail a été envoyé à {{ contact.EMAIL }}Vous avez reçu cet email car vous vous êtes inscrit sur ARGANS.

Se désinscrire

© 2021 ARGANS