

AIRFRESH

Air pollution removal by urban forests for a better human well-being

Maps of Ecosystems Services provided by urban trees in Aix-en-Provence and Florence

Actions B2 & B3 Reporting Date: 01/12/2024

Data Project			
Project location	France (Provence-Alpes-Côte-d'Azur) - Italy (Tuscany)		
Project start date:	01/09/2020		
Project end date:	01/12/2024		
Total budget	1,225,070 Euro		
EC contribution:	673,512 Euro		
(%) of eligible costs	55%		
	Data Beneficiary		
Name Beneficiary	ACRI-ST		
Contact person	Dr Pierre SICARD		
Postal address	260, route du Pin Montard - BP 234		
	06904 Sophia Antipolis cedex - France		
E-mail	pierre.sicard@acri-st.fr		
Project website	www.life-airfresh.eu		

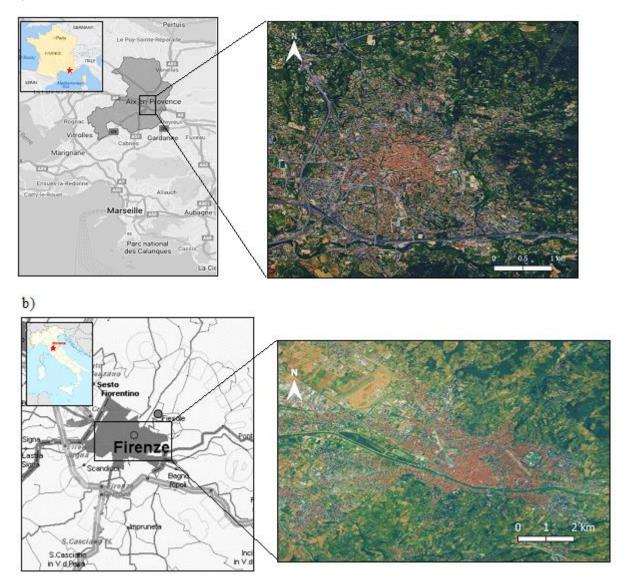
Table of Content

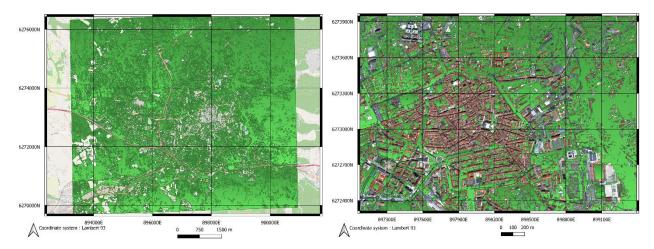
Executive summary	3
1. Mapping of tree species at city scale	4
2. Air Pollution removal capacity of urban trees at city scale	8
3. Mapping of surface air temperature at city scale	9
4. The 3-30-300 Rule Compliance	13
5. Air Pollution removal capacity of urban trees at conurbation scale	

Executive summary

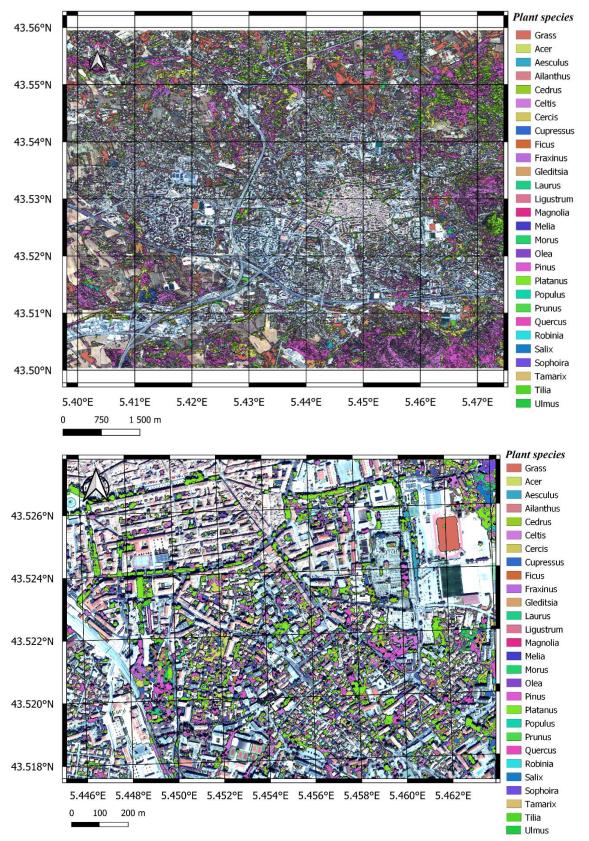
Mediterranean cities are expected to be more strongly affected by climate change, including ozone (O₃) pollution, than most of the other regions of the world (<u>Sicard et al., 2017</u>). We have thus selected two front-runner cities Aix-en-Provence (France) and Florence (Italy) as pilot cities. In 2020-2024, <u>LIFE AIRFRESH</u> developed **new citywide geospatial tools** designed to i) detect, classify, and map individual trees and urban green spaces within private and public areas (Fig. 1); ii) map the benefits that urban trees generate (air pollution reduction); iii) map the 3-30-300 rule compliance; iv) map the areas prone to urban heat islands; and v) map the open areas available for re-naturing. **Due to the limitation (<50MB), all maps are available on request.**

a)




Figure 1 - Localization of the two study areas in both cities: Aix-en-Provence (a) and Florence (b). The study area, covered by the satellite image extends over 35 km^2 in Aix-en-Provence and 70km^2 in Florence.

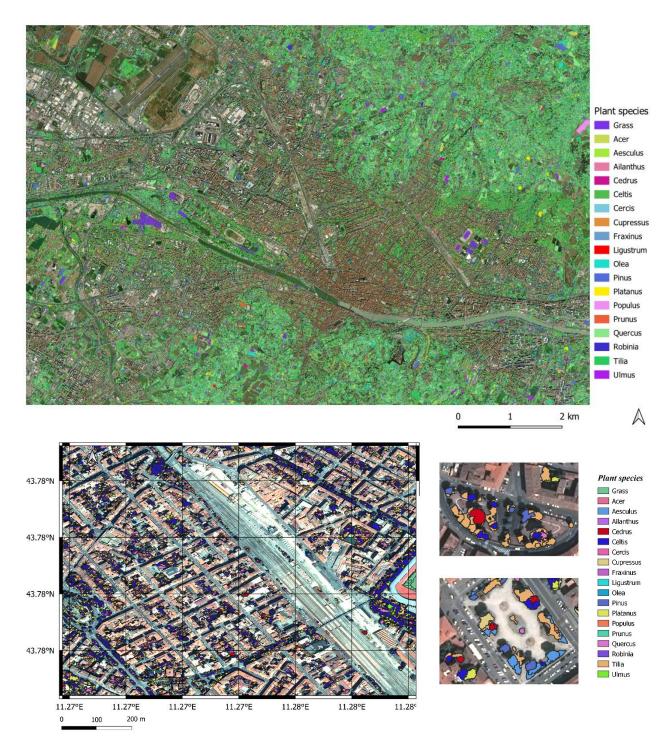
1. Mapping of tree species at city scale


The municipal tree inventories include only public trees managed by the municipality which represent less than 15% of the total number of trees detected in both public and private areas over the study areas in Florence and Aix-en-Provence.

In Aix-en-Provence, **413,895 individual trees** as well as 5,438 herbaceous areas have been detected. The **vegetated areas** (trees and grass) cover **39.6%** of the study area (Fig. 2).

Our satellite-based approach allowed classifying **22 dominant tree species** and grassland with an **overall accuracy of 84%** (Sicard et al., 2023). The total canopy cover of most common tree species are: *Pinus spp.* (~ 487 ha), *Celtis australis* (~ 374 ha), *Platanus acerifolia* (~ 370 ha), *Acer spp.* (~ 265 ha), *Cupressus sempervirens* (~ 124 ha), *Sophora japonica* (~ 54 ha), *Fraxinus spp.* (~ 41 ha), *Cercis siliquastrum* (~ 14 ha), *Populus spp.* (~ 8 ha), and *Tilia* spp. (~ 7 ha). The grass (lawn/turf) covers about 152 ha (Fig. 3).

Figure 2 - Green spaces coverage (tree canopy cover, and grass) over the study area in Aix-en-Provence: study area (left) and a zoom over the south-east part of the study area (right).


Figure 3 – Detection, delineation, and classification of urban tree canopies over the study area in Aix-en-Provence (top, 50km²) and a zoom over the south-east part of the study area (bottom).

In Florence, **549,416 individual trees** have been detected as well as 1,157 herbaceous areas have been detected. The **vegetated areas** (trees and grass) cover **30.1%** of the study area (Fig. 4).

Our satellite-based approach allowed classifying **20 dominant tree species** and grassland with an **overall accuracy of 83%** (Sicard et al., 2023). In Florence, the total canopy cover of most common tree species (Fig. 5) are: *Quercus* spp. (~ 728 ha), *Tilia europaea* (~ 492 ha), *Celtis australis* (~ 338 ha), *Pinus* spp. (~ 278 ha), *Cupressus sempervirens* (~ 176 ha), *Platanus acerifolia* (~ 90 ha), *Olea europaea* (~ 88 ha), and *Acer* spp. (~ 61 ha).

Figure 4 - Green spaces coverage (tree canopy cover, and grass) over the study area in Florence: study area (left) and a zoom over the center part of the study area (right).

Figure 5 - Detection, delineation, and classification of urban tree canopies over the study area in Florence (top, 80km²), and a zoom over the city center (bottom).

The produced maps deliver spatially explicit representations of green spaces distribution in a costeffective and objective way over a large spatial extent. The area covered and geo-located characteristics of urban green spaces as well as **open areas potentially available for re-naturing** are mapped in a GIS environment.

2. Air Pollution removal capacity of urban trees at city scale

In LIFE AIRFRESH, we developed an innovative single-tree model (<u>FlorTree</u>) to quantify and map the air pollutants removal capacity of about 400 plant species, e.g., CO₂, O₃, PM₁₀, PM_{2.5}, NO₂. Hourly meteorological data and surface air pollutants concentrations are obtained with WRF-CHIMERE model with a spatial resolution of <1km (<u>Anav et al., 2024</u>).

In Aix-en-Provence, the **413,960 adult trees** have eliminated in 2023: 225 tons O_3 (formation: 9 tons, removal: 234 tons), 41 tons NO_2 (6,600 cars¹), 97 tons PM_{10} (147,400 cars¹), 16,560 tons CO_2 (10,400 cars¹) and lawns/herbaceous have eliminated 423 tons CO_2 (about 2.6%). The 414,000 adult trees have eliminated 3.1% and 2.8% of the NO_x and CO_2 local emissions and 36.7% of PM_{10} emissions.

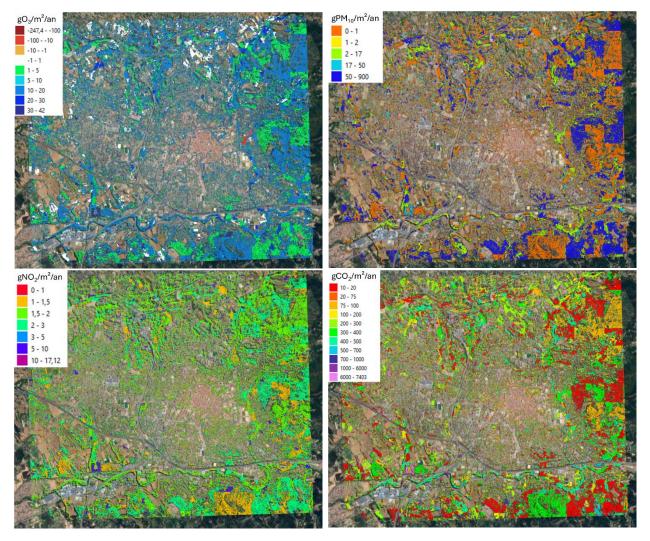


Figure 6 – Spatial distribution of the removed ozone (top, left), PM_{10} (top, right), NO_2 (bottom, left) and CO_2 (bottom, right) amount by individual trees (g per m² of leaf area per year) in Aix-en-Provence for the year 2023.

¹ emissions of private cars registered in France which has driven an average of 12,200 km during the year with an average speed of 70 km/h.

In **Florence**, the vegetated areas cover 30.3% of the studied area, and the **553,450 adult trees** have eliminated: 530 tons O_3 (formation: 22 tons, removal: 552 tons), 73 tons NO_2 (17,140 cars¹), 185 tons PM_{10} (281,550 cars¹), 25,205 tons CO_2 (15,890 cars¹).

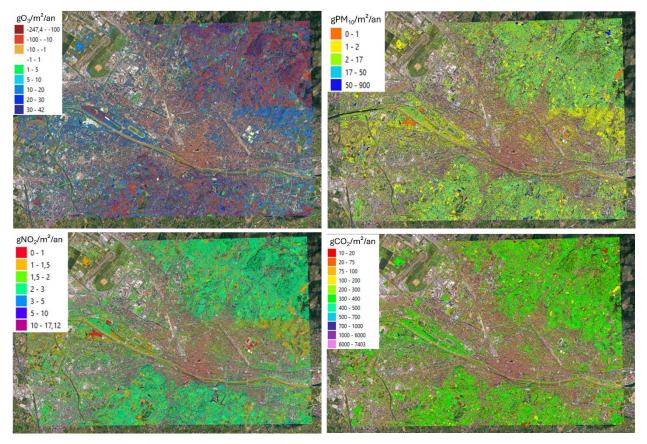
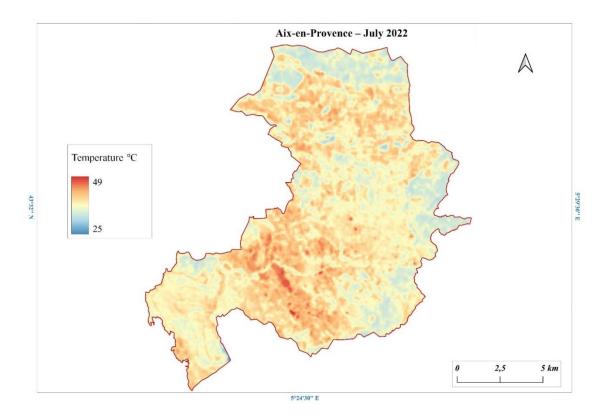



Figure 7 – Spatial distribution of the removed ozone (top, left), PM_{10} (top, right), NO_2 (bottom, left) and CO_2 (bottom, right) amount by individual trees (g per m² of leaf area per year) in Florence for the year 2023.

3. Mapping of surface air temperature at city scale

The Local Climate Zones method allow classifying each urban area according to their climatic characteristics. An automatic processing of Landsat satellite images is also used to spatially structure the surface air temperature and show the differences as a function of the Local Climate Zones. The results allow municipalities to detect areas prone to urban heat islands effects and prioritize neighbourhoods to be revegetated (Figs. 8-10).

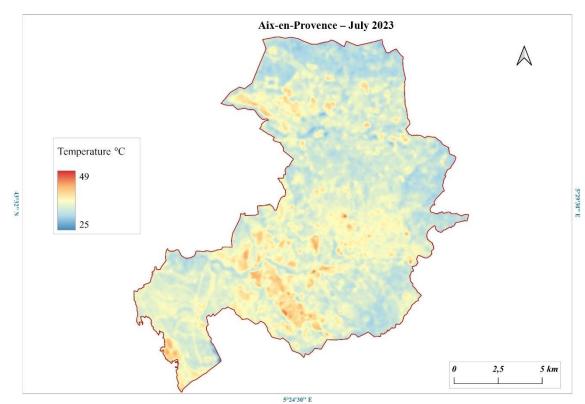
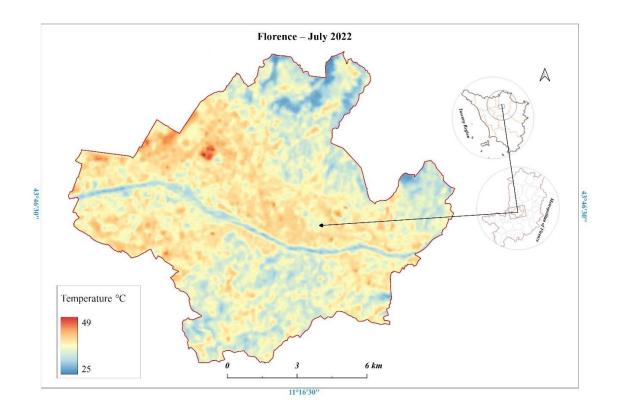



Figure 8 – Surface mean air temperature in Aix-en-Provence in July 2022 (top) and July 2023 (bottom).

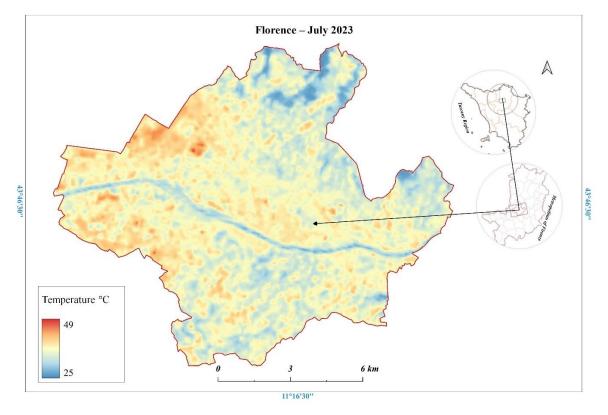
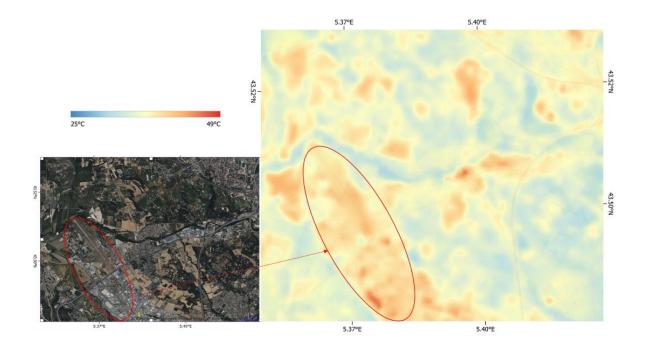



Figure 9 – Surface mean air temperature in Florence in July 2022 (top) and July 2023 (bottom).

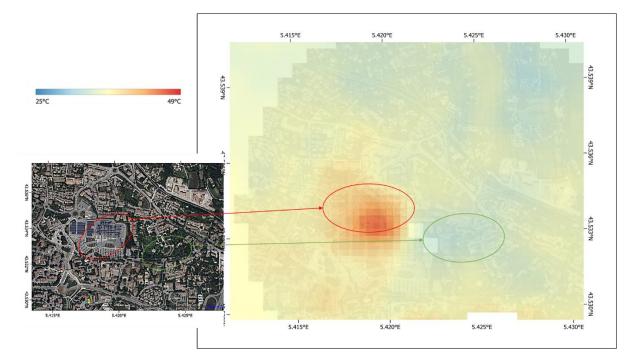


Figure 10 – Hotspots prone to urban heat islands effects: aerodrome center (top) and a commercial close to a colder urban park (bottom) in Aix-en-Provence.

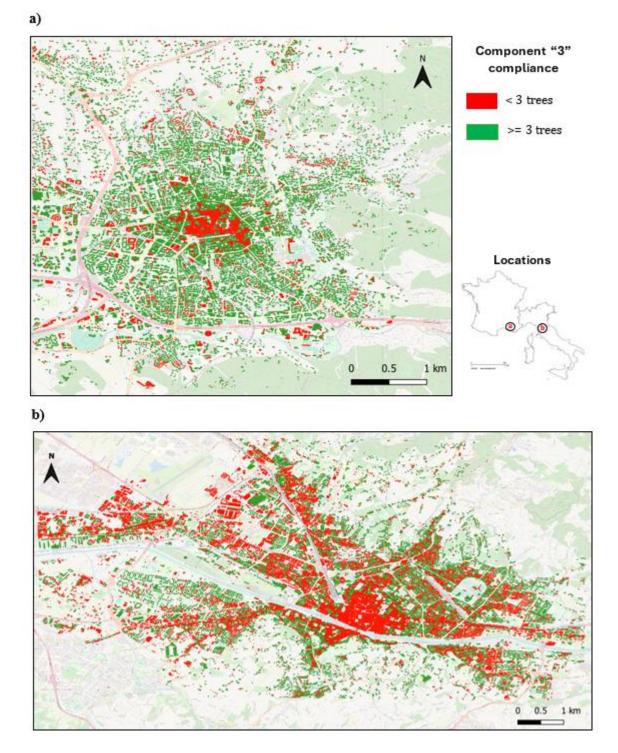
4. The 3-30-300 Rule Compliance

The 3-30-300 rule, introduced in 2021, mandates that every citizen should see at least three mature trees from their home, live in neighborhoods with at least 30% tree canopy cover, and be within 300 meters of a high-quality green space. In LIFE AIRFRESH, we developed a geospatial tool using remote sensing and Geographic Information System techniques to assess compliance with the 3-30-300 rule (see *Guidelines for City Planners*). The tool employs very-high-resolution satellite imagery for detecting trees and estimating canopy cover and integrates OpenStreetMap data to assess proximity to green spaces. The geospatial mapping and satellite-based approaches to assess the 3-30-300 rule compliance is instrumental in helping cities to develop resilient and climate-neutral Urban Greening Plans.

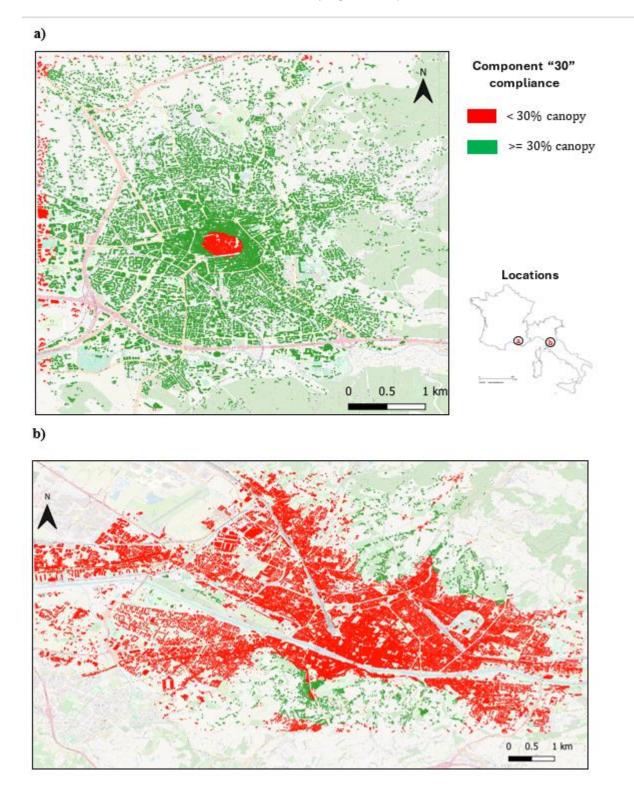
Component 3

In Aix-en-Provence, 16,336 buildings (68%) complied with Component 3, and non-compliance primarily concentrated in the downtown area and scattered around the city's borders (Fig. 11a). Conversely, Florence exhibited the opposite pattern, with only 38% of buildings (14,521) meeting the criteria (Fig. 11b).

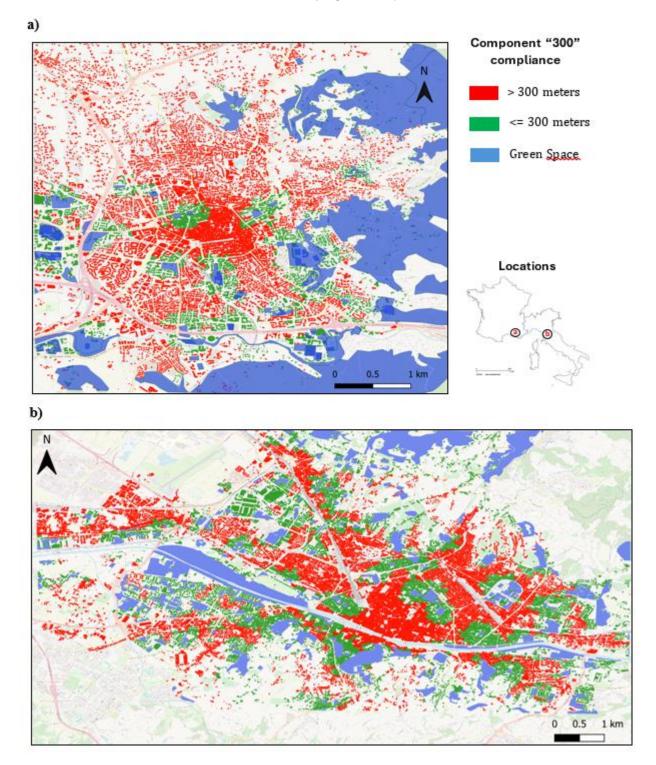
Component 30


In Aix-en-Provence, our results showed that approximately 94% of buildings (22,537) complied with Component 30, while non-compliant buildings are predominantly found in the downtown area (Fig. 12a). Florence exhibited a starkly different configuration, with 90% (34,409 buildings) of non-compliant buildings widespread throughout the entire study area (Fig. 12b).

Component 300


In Aix-en-Provence, 6,414 buildings (27%) complied with Component 300, while 17,606buildings (73%) are non-compliant scattered throughout the study area (Fig. 13a). In Florence, about 41% of buildings (15,659) complied with Component 300 (Fig. 13b).

Rule 3.30.300 Compliance


In Aix-en-Provence, 4% of buildings are compliant with no component, 22% and 56% of buildings are compliant with one and two components, and 18% are fully compliant (Fig. 14a). In Florence, 37% of buildings are compliant with no component, 40% and 19% of buildings are compliant with one and two components, and only 4% are fully compliant (Fig. 14b).

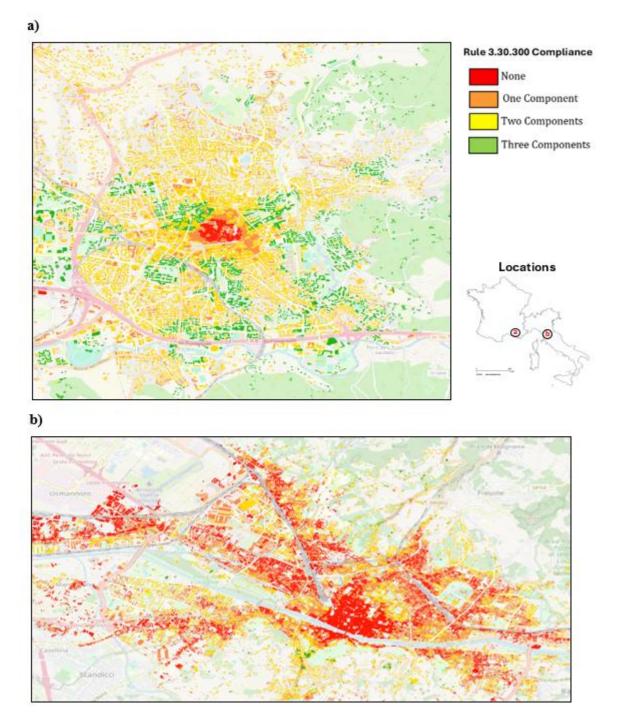

Figure 11. Compliance with Component 3 in Aix-en-Provence (a) and Florence (b) - Buildings meeting the requirement of having at least three trees in their surroundings (in green) and those that do not meet this criterion (in red).

Figure 12. Compliance with Component 30 in Aix-en-Provence (a) and Florence (b) - Buildings that have at least 30% canopy cover within their neighborhoods (in green) and those with less than 30% canopy cover (in red).

Figure 13 - Compliance with Component 300 in Aix-en-Provence (a) and Florence (b) – Buildings within 300 meters of a high-quality green space are marked in green, while non-compliant buildings are in red. High-quality green spaces are shown in blue.

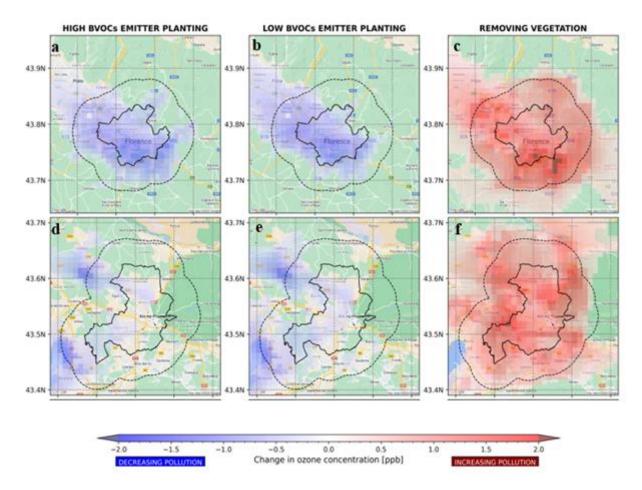


Figure 14 - Rule 3.30.300 Compliance in the study areas of Aix-en-Provence (a) and Florence (b) combining the three components: red for non-compliance, orange for compliance with one component, yellow for two components, and green for full compliance.

5. Air Pollution removal capacity of urban trees at conurbation scale

Results clearly indicated that removing all the urban and peri-urban vegetation consistently increases mean summertime surface O_3 concentrations in the three analyzed cities and their surrounding rural areas (figure 15). In Florence, we found a mean increase of 1.3 ppb (+2.8%) and 1.2 ppb (+2.6%) in Aix-en-Provence. The removal of vegetation reduces the amount of O_3 entering the leaves through plant stomata; in addition, the reduction of other non-stomatal deposition pathways, including uptake by leaf cuticles, branches or other woody surfaces contributes to decrease the amount of O_3 removed by deposition, thereby enhancing the concentrations remaining in the atmosphere.

Interestingly, the results highlight that planting both high and low BVOC-emitting trees reduces the mean daily summer O₃ concentration. The most pronounced effect occurs in Florence (-0.8 ppb, -1.7%), where we observe a negligible difference between the two planting strategies. In Aix-en-Provence, planting low BVOC-emitting trees is slightly more effective at reducing O₃ compared to planting high BVOC-emitting trees (-0.25 ppb vs. -0.18 ppb, -0.5% vs. -0.4%, respectively).

Figure 15 - Changes in surface O_3 concentration considering different tree planting scenarios. Difference in mean summer O3 concentration between the control run with current vegetation and three different planting strategies for the cities of Florence (a-c) and Aix-En-Provence (d-f).

Looking at fine particulate matter (figure 16), results indicate that removing urban and peri-urban vegetation reduces $PM_{2.5}$ concentrations, with a mean city-scale decrease of 1.3% in Florence and 2.2% in Aix-en-Provence. These differences are primarily driven by reductions in precursor BVOCs emissions and changes in ventilation, including both wind speed and mixing depth.

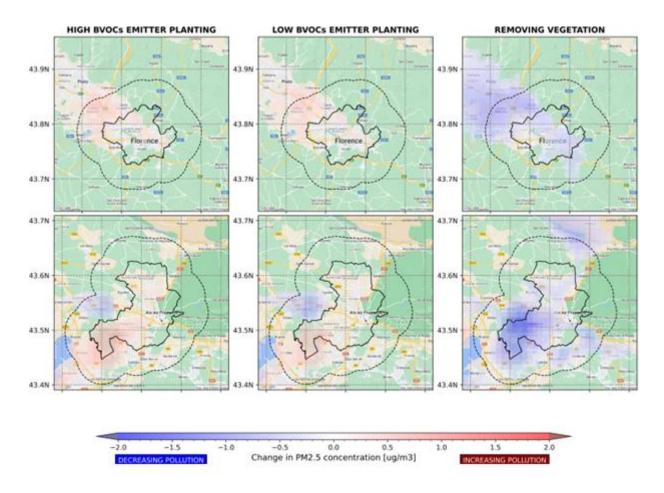


Figure 16 - Change in $PM_{2.5}$ concentration. Spatial distribution of the mean change in daily summer $PM_{2.5}$ concentrations computed between the scenarios and the control simulation for the cities of Florence (a-c) and Aix-En-Provence (d-f).

Annex 1 - Net O₃ uptake (g tree⁻¹day⁻¹), NO₂ uptake (g tree⁻¹day⁻¹), PM10 deposition (g tree⁻¹day⁻¹) and CO₂ sequestration (t tree⁻¹year⁻¹) for each species and relative scoring.

Genus	Species	Net O3 uptake	NO ₂ uptake	PM10 deposition	CO ₂ seq.
Acer	negundo	6.51	5.14	0.81	0.0969
Acer	platanoides	17.69	13.32	2.04	0.0568
Acer	pseudoplatanus	17.09	13.57	2.04	0.0568
Fagus	sylvatica	24.76	19.37	4.80	0.1001
Pseudotsuga	menziesii	8.24	31.31	12.63	0.0584
Quercus	cerris	8.37	9.36	1.56	0.0778
Quercus	palustris	3.93	8.66	1.46	0.1077
Tilia	cordata	22.48	16.76	1.72	0.0689
Tilia	platyphyllos	23.42	17.61	1.72	0.0689
Tilia	x europaea	17.35	13.04	1.26	0.0689
Abies	alba	3.82	4.55	2.04	0.0421
Aesculus	hippocastanum	13.20	9.86	0.31	0.0568
Alnus	glutinosa	2.50	3.91	0.43	0.0639
Carpinus	betulus	7.74	5.79	0.59	0.0719
Cedrus	atlantica	9.66	9.76	4.13	0.0401
Cedrus	deodara	4.93	4.74	2.00	0.0401
Cedrus	libani	16.20	22.10	9.56	0.0401
Fraxinus	angustifolia	8.69	6.69	0.20	0.0497
Fraxinus	excelsior	26.05	19.45	0.56	0.0497
Fraxinus	uhdei	9.23	6.89	0.20	0.0497
Fraxinus	velutina	9.06	6.77	0.20	0.0497
Juglans	regia	6.95	6.12	0.62	0.0523
Liriodendron	tulipifera	15.39	18.84	1.79	0.0475
Ostrya	carpinifolia	6.58	4.90	0.35	0.0639
Picea	abies	12.23	12.56	6.31	0.0421
Pinus	radiata	2.78	2.83	1.80	0.0589

Dlatanus	v accuifolia	6.73	16.67	1.58	0.0420
Platanus T	x acerifolia				
Taxus	baccata	3.33	3.67	1.65	0.0523
Ulmus	americana	12.00	8.98	0.89	0.0496
Zelkova	serrata	6.30	4.71	0.45	0.0728
Acer	campestre	2.92	2.21	0.37	0.0623
Ailanthus	altissima	4.37	3.27	0.32	0.0523
Alnus	cordata	3.03	2.57	0.29	0.0639
Catalpa	bignonioides	4.58	3.91	0.40	0.0399
Celtis	australis	4.97	3.79	0.40	0.0446
Fraxinus	pennsylvanica	5.43	4.06	0.12	0.0497
Gleditsia	triacanthos	12.66	9.78	0.89	0.0365
Parrotia	persica	2.40	2.75	0.32	0.0523
Paulownia	tomentosa	3.73	2.75	0.32	0.0523
Picea	smithiana	2.30	2.12	1.13	0.0421
Pinus	canariensis	2.12	2.81	1.80	0.0885
Pinus	densiflora	2.96	2.79	1.80	0.0435
Pinus	elliotii	0.89	2.84	1.80	0.0548
Pinus	resinosa	2.98	2.78	1.80	0.0435
Pinus	sabiniana	2.81	2.84	1.80	0.0435
Pinus	taeda	0.86	2.83	1.80	0.0643
Sophora	japonica	6.65	6.84	0.72	0.0393
Ulmus	minor	5.17	3.95	0.40	0.0444
Ulmus	parviflora	12.10	9.06	0.89	0.0300
Betula	nigra	2.02	1.55	0.34	0.0880
Castanea	sativa	-3.51	8.95	0.92	0.0834
Celtis	occidentalis	4.65	3.52	0.40	0.0446
Cinnamomum	camphora	6.81	6.26	0.69	0.0272
Eucalyptus	globulus	-411.49	16.04	1.62	0.1115
Laurus	nobilis	4.14	4.34	0.53	0.0272

Picea	alcoquiana	1.52	1.40	0.77	0.0421
Picea	asperata	1.61	1.48	0.77	0.0421
Picea	aurantiaca	1.46	1.33	0.77	0.0421
Picea	koyamai	1.52	1.40	0.77	0.0421
Picea	likiangensis	1.63	1.51	0.77	0.0421
Picea	meyeri	1.52	1.40	0.77	0.0421
Picea	morrisonicola	1.63	1.51	0.77	0.0421
Picea	orientalis	1.58	1.46	0.77	0.0421
Picea	rubens	1.77	2.21	1.19	0.0421
Pinus	halepensis	1.10	1.26	0.80	0.0427
Pinus	palustris	0.64	2.93	1.80	0.0435
Pinus	ponderosa	2.62	2.83	1.80	0.0228
Pinus	sibirica	1.92	2.84	1.80	0.0435
Pinus	strobus	1.98	2.91	1.80	0.0435
Quercus	coccinea	-233.79	6.80	1.46	0.0778
Quercus	douglasii	-20.96	11.38	1.99	0.0778
Quercus	ilex	-84.51	17.61	3.13	0.0533
Quercus	petraea	-67.49	13.88	2.16	0.0778
Quercus	robur	-124.79	10.36	1.65	0.0778
Quercus	rotundifolia	-9.45	15.16	2.73	0.0778
Quercus	rubra	-0.04	12.88	2.17	0.0723
Quercus	suber	-68.03	10.18	1.90	0.0778
Acer	monspessulanum	1.26	1.14	0.20	0.0623
Chamaecyparis	lawsoniana	0.72	0.69	0.36	0.0523
Cupressus	arizonica	1.08	1.14	0.64	0.0523
Cupressus	sempervirens	0.58	0.56	0.28	0.0523
Eriobotrya	japonica	2.60	2.42	0.31	0.0322
Eucalyptus	camaldulensis	-18.83	4.34	0.43	0.1115
Eucalyptus	viminalis	-0.83	4.36	0.45	0.1115

α , 1	1.1.1	4.07	2.20	0.50	0.0000
Ginkgo	biloba	4.07	3.39	0.58	0.0223
Liquidambar	styraciflua	-55.50	6.03	0.57	0.0559
Melia	azedarach	1.67	1.27	0.14	0.0523
Pinus	contorta	1.95	2.86	1.80	0.0208
Pinus	nigra	1.74	3.00	1.80	0.0254
Pinus	pinea	-4.83	3.98	2.46	0.0435
Quercus	frainetto	-179.24	3.84	0.63	0.0778
Betula	pendula	1.65	1.56	0.34	0.0318
Camellia	sasanqua	2.17	1.97	0.25	0.0190
Cercis	siliquastrum	1.98	1.48	0.17	0.0393
Cupressus	macrocarpa	0.42	0.45	0.24	0.0523
Eucalyptus	glaucescens	-124.62	3.59	0.37	0.1115
Fraxinus	ornus	1.38	1.10	0.04	0.0497
Magnolia	grandiflora	-1.40	7.00	0.78	0.0226
Picea	engelmanii	-4.91	1.37	0.77	0.0421
Picea	omorika	-2.10	1.41	0.77	0.0421
Picea	sitchensis	-1.59	2.25	1.18	0.0421
Pinus	clausa	-1.91	2.84	1.80	0.0435
Pinus	pinaster	-6.00	2.86	1.80	0.0435
Populus	alba	-38.02	7.62	0.70	0.0431
Populus	nigra	-115.46	7.68	0.70	0.0431
Prunus	laurocerasus	1.78	1.61	0.21	0.0242
Quercus	pubescens	-48.26	2.03	0.36	0.0778
Rhus	typhina	2.37	2.14	0.27	0.0190
Robinia	pseudoacacia	-6.64	4.19	0.42	0.0420
Acacia	dealbata	1.16	0.93	0.10	0.0393
Arbutus	unedo	1.88	1.81	0.22	0.0190
Morus	alba	1.71	1.29	0.14	0.0320
Morus	nigra	1.74	1.31	0.14	0.0320
	0				-

Prunus	dulcis	1.85	1.35	0.16	0.0242
Ficus	carica	0.27	1.64	0.19	0.0320
Morus	platanifolia	1.16	0.88	0.10	0.0320
Olea	europaea	1.27	1.25	0.71	0.0111
Photinia	x fraserii	0.76	0.69	0.09	0.0231
Pinus	sylvestris	-0.96	2.84	1.80	0.0128
Populus	tremula	-17.66	1.46	0.15	0.0431
Prunus	domestica	0.90	0.66	0.07	0.0242
Pyrus	calleryana	1.25	0.92	0.10	0.0344
Pyrus	coronaria	1.24	0.91	0.10	0.0266
Pyrus	kawakamii	1.24	0.91	0.10	0.0333
Pyrus	malus	1.24	0.91	0.10	0.0266
Sorbus	americana	1.18	0.87	0.10	0.0231
Sorbus	aria	1.16	0.86	0.10	0.0231
Sorbus	aucuparia	1.18	0.87	0.10	0.0231
Chamaerops	humilis	-4.18	1.43	0.41	0.0190
Cornus	alternifolia	0.54	0.39	0.01	0.0208
Cornus	nuttallii	0.54	0.39	0.01	0.0208
Juniperus	communis	0.02	0.02	0.01	0.0523
Lagestroemia	indaca	1.13	0.82	0.03	0.0079
Magnolia	stellata	0.17	0.29	0.04	0.0226
Malus	communis	1.07	1.00	0.09	0.0153
Picea	mariana	-0.51	0.21	0.12	0.0421
Picea	montigena	0.21	0.19	0.12	0.0421
Prunus	cerasifera	0.86	0.63	0.07	0.0139
Punica	granatum	1.11	0.81	0.10	0.0190
Pyrus	communis	1.07	0.90	0.10	0.0120
Salix	alba	-6.51	0.63	0.06	0.0431
Salix	amygdaloides	-0.71	0.19	0.02	0.0431

Salix	atrocineria	-2.55	0.44	0.05	0.0431
Salix	babylonica	-16.78	0.44	0.05	0.0431
Salix	matsudana	-3.27	0.43	0.05	0.0431
Sambucus	canadensis	1.10	0.80	0.03	0.0190
Sambucus	nigra	1.10	0.81	0.03	0.0190
Sambucus	simpsonii	1.10	0.80	0.03	0.0190
Acer	japonicum	0.40	0.33	0.06	0.0092
Cornus	florida	0.53	0.39	0.01	0.0208
Cornus	mas	-0.64	0.68	0.02	0.0208
Cytisus	battandieri	0.02	0.01	0.00	0.0393
Cytisus	multiflorus	0.02	0.01	0.00	0.0393
Cytisus	praecox	0.02	0.01	0.00	0.0393
Diospyros	kaki	0.38	0.29	0.03	0.0190
Ilex	cassine	0.46	0.42	0.05	0.0190
Ilex	cornuta	0.46	0.42	0.05	0.0190
Ilex	opaca	0.45	0.41	0.05	0.0190
Ligustrum	coriaceum	0.44	0.39	0.01	0.0266
Ligustrum	lucidum	0.44	0.39	0.01	0.0266
Ligustrum	vulgare	0.40	0.36	0.01	0.0266
Picea	glauca	-0.20	0.19	0.12	0.0421
Picea	pungens	-0.48	0.54	0.33	0.0152
Salix	lasiandra	-0.72	0.18	0.02	0.0431
Salix	lasiolepis	-0.71	0.19	0.02	0.0431
Buxus	sempervirens	-0.70	0.22	0.03	0.0190
Cotinus	coggygria	0.39	0.29	0.01	0.0194
Cytisus	scoparius	-0.14	0.01	0.00	0.0393
Phillyrea	angustifolia	0.10	0.11	0.01	0.0266
Pistacia	chinensis	-0.12	0.63	0.07	0.0194
Prunus	avium	0.16	0.12	0.01	0.0242

Prunus	persica	0.14	0.11	0.01	0.0242
Prunus	serotina	0.16	0.12	0.01	0.0242
Prunus	serrulata	0.15	0.11	0.01	0.0346
Prunus	spinosa	0.15	0.11	0.01	0.0242
Prunus	virginiana	0.16	0.11	0.01	0.0242
Pyracantha	coccinea	0.10	0.09	0.01	0.0231
Rhamnus	alaternus	-2.48	0.92	0.12	0.0190
Rubus	fruticosus	0.01	0.01	0.00	0.0231
Rubus	ideaus	0.01	0.01	0.00	0.0231
Rubus	occidentalis	0.01	0.01	0.00	0.0231
Rubus	parviflorus	0.01	0.01	0.00	0.0231
Rubus	ulmifolius	0.01	0.01	0.00	0.0231
Rubus	ursinus	0.01	0.01	0.00	0.0231
Salix	discolor	-0.36	0.04	0.01	0.0431
Salix	interior	-0.37	0.04	0.01	0.0431
Salix	lutea	-0.36	0.04	0.01	0.0431
Salix	scouleriana	-0.18	0.05	0.01	0.0431
Viburnum	tinus	0.15	0.13	0.02	0.0190
Callistemon	citrinus	-0.39	0.13	0.02	0.0190
Ceanothus	arborescens	0.02	0.02	0.00	0.0190
Ceanothus	arboreus	0.02	0.02	0.00	0.0190
Ceanothus	crassifolius	0.02	0.02	0.00	0.0190
Ceanothus	cuneatus	0.02	0.02	0.00	0.0190
Ceanothus	greggii	0.02	0.02	0.00	0.0190
Ceanothus	leucodermis	0.01	0.02	0.00	0.0190
Ceanothus	maritimus	0.02	0.02	0.00	0.0190
Ceanothus	spinosus	0.02	0.02	0.00	0.0190
Cistus	albidus	0.01	0.01	0.00	0.0190
Cistus	incanus	0.01	0.01	0.00	0.0190

Cistus	salvifolius	0.00	0.01	0.00	0.0190
Hibiscus	syriacus	0.04	0.03	0.00	0.0190
Hypericum	perforatum	0.01	0.01	0.00	0.0190
Lavandula	luisieri	0.01	0.01	0.00	0.0190
Pittosporum	phillyraeoides	0.05	0.04	0.01	0.0190
Pittosporum	tobira	0.08	0.07	0.01	0.0190
Pittosporum	undulatum	0.08	0.07	0.01	0.0190
Rosmarinus	officinalis	0.01	0.01	0.01	0.0190
Cistus	ladanifer	-0.05	0.01	0.00	0.0190
Erica	arborea	0.00	0.00	0.00	0.0190
Erica	multiflora	0.00	0.00	0.00	0.0190
Lavandula	stoechas	0.00	0.01	0.00	0.0190
Myrtus	communis	-0.68	0.03	0.00	0.0190
Capparis	spinosa	NA	0.01	0.00	0.0190
Cassia	corymbosa	NA	0.03	0.00	0.0393
Cordyline	indivisa	NA	0.53	0.07	0.0190
Cornus	controversa	NA	0.40	0.01	0.0208
Quercus	turneri	NA	0.98	0.20	0.0778
Ruscus	aculeatus	NA	0.00	0.00	0.0190
Sorbus	domestica	NA	0.86	0.10	0.0231
Teucrium	fruticans	NA	0.02	0.00	0.0190

- End of the document -